DIVISIÓN ENTERA Y RAÍCES

Ejercicio 1:

Utilizando el esquema de Ruffini, halla el cociente y el resto de dividir p(x) entre g(x) para los siguientes casos:

a)
$$p(x) = 7x^3 + 6x^2 - 10x - 3$$

$$g(x) = x - 1$$

b)
$$p(x) = 2x^3 - x^2 + 5x - 6$$

$$g(x) = x + 3$$

c)
$$p(x) = 4x^3 + 3x - 1$$

$$g(x) = x - 1/2$$

d)
$$p(x) = -x^3 + 3$$

$$g(x) = x$$

e)
$$p(x) = 5x^3 + 7x^2 + 2x$$

$$g(x) = x + 2$$

Ejercicio 2:

Completa el siguiente esquema y determina dividendo, divisor, cociente y resto.

4	-2		-7
	10	31	

Ejercicio 3:

Sea f / f(x) = $7x^3 + ax^2 + x + 4$. Halla "a" sabiendo que la suma de los coeficientes del cociente de dividir f entre g / g(x) = x - 2 es igual a 35.

Ejercicio 4:

Del esquema de Ruffini utilizado para hallar el cociente y el resto de dividir f(x) entre $(x - \alpha)$ sabemos lo siguiente:

	3	1
-8		10
	-5	

Determina: α , f(x) y el cociente de la división.

Ejercicio 5:

- a) Efectúa la división entera de f tal que $f(x) = 2x^3 5x^2 21x + 36$ entre d tal que d(x) = x 4.
- b) Escribe la relación que existe entre dividiendo, divisor, cociente y resto de la división anterior, y deduce las raíces de f. Justifica el procedimiento.

Ejercicio 6:

En cada caso, halla el resto de dividir f entre $(x - \alpha)$ e investiga si α es raíz de f:

a)
$$f(x) = 2x^3 - 5x^2 + 3x - 2 \cos \alpha = 2$$

b)
$$f(x) = -x^3 - 4x^2 - 2x - 5 \cos \alpha = -3$$

c)
$$f(x) = 3x^3 + 5x^2 + 4x \cos \alpha = -1$$

Ejercicio 7:

Sea $k / k(x) = (3m - 1)x^3 + (2m + 2)x^2 + (1 - m)$. Para cada uno de los casos siguientes, halla m para que:

- a) k admita raíz x = -1.
- b) k(-2) = 24.
- c) k admita raíz x = 0.

Ejercicio 8:

Sea f / f(x) = $7x^3 + mx^2 + (3m - 5)x + 11 - m$.

- a) Halla m∈**IR** para que −1 sea raíz de f.
- b) Con el valor de m hallado, determina el cociente y el resto de dividir f entre (x + 1).
- c) Escribe f como producto de dos funciones polinómicas.
- d) Demuestra que no existe otra raíz de f.