EJEMPLO 6

En un recipiente de 0,5 L se colocan 0,075 moles de $PCl_5(g)$ y se establece el equilibrio $PCl_5(g) \rightleftarrows PCl_3(g) + Cl_2(g)$ a cierta temperatura. Calcula la constante de equilibrio sabiendo que el PCl_5 se encuentra disociado un 62,5 %

EJEMPLO 7

La constante de equilibrio K_C para la reacción reversible H_2 (g) + I_2 (g) \rightleftharpoons 2 HI (g) vale 54,3 a 703 K. Si a esta temperatura se hallan en un recipiente de reacción 0,21 moles \cdot L^{-1} de H_2 , 0,16 moles \cdot L^{-1} de H_2 y 1,78 moles \cdot L^{-1} de HI (g), estudia si el sistema está en equilibrio. Si no lo está, indica en qué sentido progresará el sistema.

EJEMPLO 8

En un recipiente de 2,0 L se mezcla una cierta cantidad de N_2 (g) y de H_2 (g) y se eleva la temperatura a 1 000 K hasta que el sistema alcance el equilibrio:

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

A esta temperatura, el valor de K_C es 2,37 · 10⁻³ L² · mol⁻². Calcula el valor de K_D.