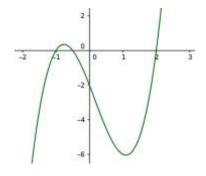
- 1) Sean: A(-1; 1), B(2; 3) y O(0; 0)
 - a) Halla todas las posibles ordenadas de un punto C(3, y) tal que: d(A, C) = 5.
 - b) Demuestra que el triángulo AOB es isósceles y halla su área.
 - c) Escribe la ecuación de la circunferencia \mathscr{C} de centro M(2; 1) que pasa por el punto T(-1; 1).
 - d) Indica, justificando analíticamente, la posición relativa de la recta r: y = x 4 respecto a la cfa \mathscr{C} .
- 2) Sea $f(x) = ax^3 + bx^2 + cx + d$ cuyo gráfico se presenta a continuación. Se sabe además que el resto de dividir f(x) entre (x 1) es -6.
 - a) Determina los coeficientes de f(x).
 - b) Escribe la descomposición factorial de f(x).
 - c) Resuelve en R la inecuación: $\frac{-5(x-2)}{f(x)} \ge 0$



3) Resuelve en R:

a)
$$\frac{15^x}{3^x} = \frac{5^{3x-3}}{\sqrt{5}}$$

b) $log_{1/7} (4x^2 - 15) - log_{1/7} (2x - 3) = -1$ (previo estudio de existencia)

c)
$$\frac{2x-5}{x^2-9} + \frac{x-2}{2(x+3)} \le \frac{1}{x-3}$$

- 4) EJERCICIO PARA ALUMNOS LIBRES:
 - a) Resuelve en C la siguiente ecuación: $x^2 6x + 13 = 0$
 - b) Calcula expresando el resultado en forma binómica: $\frac{(-6+4i)-(2-2i)}{(5+2i)-(4+i)}$